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An efficient numerical scheme for solving a multilevel geostrophic forecast model 
having consistent first-order approximations is presented. The approach involves 
eliminating the vertical velocity between the vorticity and thermodynamic equations 
to yield a three-dimensional prognostic equation, reducing this three-dimensional 
equation to two-dimensional by an orthogonal transformation, and solving the trans- 
formed system by an iterative method. The scheme is shown to be at least four times as 
efficient as another popular scheme. Time integrations using NMC-analysed grid-point 
geopotential as initial data are carried out for calibration purposes. Finally, advantages 
and implications of such a scheme are discussed. 

I. INTRODUCTION 

A popular numerical approach in solving the geostrophic forecast system is to 
obtain first a so-called omega-equation by eliminating the time-dependent terms 
between the vorticity and the thermodynamic equations, and then solve this 
diagnostic equation together with the vorticity equation numerically. This method 
(Method A) involves therefore, the inversion of a three-dimensional and a two- 
dimensional elliptic system at each time-step during the course of a time integration. 
An alternate approach (Method C) is to eliminate the vertical velocity between the 
vorticity and thermodynamic equations, yielding a three-dimensional elliptic- 
hyperbolic system. The problem of time integration then becomes that of seeking 
solutions to this three-dimensional system at each time step. 

From the computational point of view, Method C is about twice as efficient 
as Method A because it involves the inversion of only one elliptic system. 
Charney, Gilchrist, and Shuman (1956) discussed this method in some detail 
and presented numerical results for several test cases each having slightly 
different assumptions. Phillips (1956), in his now classical numerical experiments, 
employed essentially the same approach in a two-level quasi-geostrophic 
model. The purpose of this paper is to show that for an energetically consistent 
quasi-geostrophic model, where the static stability of the atmosphere is a 
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function of pressure only, the efficiency of Method C can be increased by another 
factor of two. This scheme (Method B) involves writing a system of linear algebraic 
equations in vector form, applying an orthogonal transformation to this system, 
and solving the transformed system by relaxation. As it stands, this scheme is 
applicable to geostrophic models such as the one in use at the Air Force Global 
Weather Central (Palucci, 1970). 

II. THE MODEL 

The model considered here is a quasi-geostrophic model having consistent 
first-order approximations. With the following assumptions 

T=-EC!!? KT 8= 

R ap ’ o=P-vap (2) 

the large-scale motions in a frictionless, adiabatic, dry atmosphere in hydrostatic 
equilibrium may be described by 

This is an initial-boundary value problem and may be solved in a closed domain 
with proper boundary conditions. As mentioned earlier, two methods, designated 
as Methods A and C here, have been used in solving this problem. We shall outline 
here only the approach of Method B. 

Discretization of (3) and (4) in the vertical gives 

v2 ( 
* 

at ), = -J(#k Y v2*k + f) +.MWk - Wk-dIdP, (5) 

(6) 

where &* is the stream function at pressure pk* = (pk + pk+J2, and will be 
approximated by (& + &+J2. Definition of the model variables in the vertical 
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is shown in Fig. 1. Note that $k is defined only at pk , and &*, (TV , wlc only at pk*. 
Defining 

xk=(2&, 

w, = f&&. 
1 hc = CAP)’ ~~&h2~lc*), 

and imposing the boundary conditions 

(7) 

(5) and (6) can be written for a K-layer model as 

V2xk = -J<hc , V2hc + f) + W, - W,-, (8) 

xk+l - xk = -J($k , ?hk+d - wk/ak (9) 

Here #B is the stream function at the lower boundary. Substitution of W, from (9) 
into (8) will give 

7iJzxk + lak-lxk-l - (ak-1 + ak) Xk + akXk+d 

= -J(#k , v2$k +f + ak-l#k-1 + ak+k+l) (10) 

where a, = 0, XK+l = 0, and #x+1 will have to be specified. We shall assume here 
#K+l = tJs . To discretize in the horizontal, we define cxk = 4d2ab and 

p = !.$P’ J=EJ 

m2 ’ (11) 



EFFICIENT QUASI-GEOSTROPHIC PREDICTION 415 

then Eq. (10) can be written in vector notation for each grid point (i,j) in a com- 
putational domain r as 

where 

-aK-1 c&K-1 

(12) 

t OIK) 1 

Note that F, is a known function of the spatial coordinates, and the system is 
complete if lateral boundary conditions for x are specified. Since the matrix A 
is real symmetric, we may solve (12) by applying an orthogonal transformation 
followed by a two-dimensional relaxation. Details of the method of solution are 
given in the next section. 

III. METHOD OF SOLUTION 

To solve (12), we note that the matrix A is tridiagonal. Therefore, the only 
coupling of any component of the unknown vector xii in (12) is with its neighboring 
components through the two nonzero off-diagonal elements of A. Furthermore, 
A is real symmetric and is orthogonally similar to a real diagonal matrix D. Thus 
there exists a nonsingular matrix P such that 

PAP-l = D. (13) 

Here D = (X,6,,), a,, being the Kronecker delta, is a diagonal matrix composed 
of the Kdistinct eigenvalues A, of A, and P is a K x K orthogonal matrix composed 
of the normalized eigenvectors of A. 

We now define gij = (& , t2 ,..., &),‘;: , and let 

xii = P-l&f , (14) 
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(12) can then be written as 

with gij specified on the lateral boundary. Since D is diagonal, the components of 
sij in (15) are uncoupled. In fact, (15) can be written in scalar form for all (i,,j) in 
r as 

with tijk specified on the lateral boundary. This is a two-dimensional Helmholtz 
equation and may be solved using a large variety of iterative methods. Once gij 
is known for all (i,j) in r, xij can be obtained simply through (14). The fact that A 
is real symmetric here makes its eigenvalue problem a trivial one. Furthermore, 
the transformation matrix P is orthogonal and P-l = PT, and we have not even 
the problem of inverting the matrix P. In fact, since u(p) is time independent, so 
is the matrix A. Thus its eigenvalues h, and their eigenfunctions need only be 
computed once for all time. 

After the values of xii have been computed for all (i,,j) in r, time integration 
can be performed using any stable time-differencing scheme. A two-step Lax- 
Wendroff scheme has been adopted in the present study. The routine consists of 
computing first values of & at half time-step using forward time-differencing, 
then tendencies at half time-step using these values of & , and finally values at 
full time-step using centered time-differencing. Specifically (e.g., Richtmyer and 
Morton, 1967), 

#;.+I = #; + At x;+1!2. 

Here the superscript it indicates time steps with increment At. 

IV. EFFICIENCY COMPARISON 

To compare the efficiency of this method with that of Method A, we shall use 
as a measure the number of arithmetic operations required in each method. The 
complexity of the problem makes a precise operational count impractical and is 
therefore not attempted. Instead, we shall make liberal use of assumptions and 
present only relative comparisons. 
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Since the NMC grid is octagonal and is not readily subjected to analysis, we 
shall consider here an “equivalent” square grid with roughly the same number of 
interior grid-points as the NMC grid. Furthermore, we shall consider here only 
the point successive overrelaxation (PSOR) method. Other iterative methods may 
change the overall efficiency of both schemes but should not affect the relative 
comparison to any significant degree. 

For the kind of boundary-value problems considered here, the asymptotic 
convergence rate of the PSOR method is (e.g., Varga, 1962). 

R, = --In II, 

where ZL is the spectral radius of the iterative matrix. Assuming that the average 
rate of convergence is as fast as the asymptotic rate, the number of iterations 
necessary for reduction of any error vector by E orders of magnitude is given by 

In the case of a two-dimensional Poisson equation over a square region having 
(Z x Z) equally spaced interior grid-points, for large Z, the asymptotic convergence 
rate is well known to be 

And therefore, 

N2 - 0.366~(1+ 1). 

For a three-dimensional Poisson equation in a domain having (I x Z x K) interior 
grid-points, the spectral radius of the Jacobi matrix of the system is (e.g., Young, 
1954) 

3 Q-9 
I@) = l - 2(Z + 1)2 + (K + 1)” 2- * 

And, therefore, 

[ 3 1 
112 Rm - 

2(Z + 1)2 + (K + 1)2 2=, 

N2 - 0.366~ [ 2(Z + I)2 + (K + 1)” li2 
3 I . (18) 

The omega equation is not strictly a three-dimensional Poisson equation because 
of the presence of the map factor m and the static stability factor cr. However, 
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consideration of the spatial dependence of m and (3 would render the rate of 
convergence extremely difficult to appraise. We shall assume here that (17) and 
(18) are applicable to the omega equation. Finally, a Helmholtz equation of the 
form of (16) applied to an (I x I) grid, again for large I and ignoring the variation 
of the map factor, has 

R, - [I + h/2]1’2 +& , 

NA - 0.366(1 + 1) [+]l" E. 

With rough estimates of the convergence rates available, specific comparisons 
may now be made. Before proceeding further, however, it should be remembered 
that for a computational domain having (I x I x K) interior grid points, each 
iteration involves computations at K times (I x I) grid points. In effect, the number 
of grid points involved in one iteration is equal to that in K two-dimensional 
iterations. Moreover, at each grid point, the ratio of the number of arithmetic 
operations of a three-dimensional iteration to a two-dimensional one is about 1.25. 
Thus in comparing the computing effort of the two, we must weight the number 
of three-dimensional iterations by a factor of 1.25K. 

For a K-layer model, Method A requires at each time-step the solution of one 
three-dimensional and K two-dimensional Poisson systems. The total number of 
two-dimensional iterations per time step is then 

NA - 0.366eK 1.25 t c 2(I + 1)” + (K + 1)” 1’2 
3 ] -f- (1 + 1)). 

For I = 42, K = 4, 

With Method B, 
NA - 1.46+4 + 43) - 128~. 

NB - 0.36641 + 1) l$l (&)lje- 
‘ 

For a model having vertical resolution shown in Fig. 1, typical values of X, are 
those given in Table 1. We have then 

NB - 0.366c(Z + 1) x 1.8 - 28~. 

The relative amount of work demanded by the two methods is given by the ratio 

NA 128~ 4 
N,-286- y E # 0. 
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TABLE 1 

Values of D and pi used in the test computations” 

p*(mbW o(K mbar-I) a: h 

400 0.10 1.911 1.286 
600 0.06 5.324 6.180 
800 0.04 10.403 18.511 

loo0 0.04 26.007 43.698 

o Values of I\ are for 300-, 500-, 700-, and 900 mbar. 

We see here that Method B is about four times as efficient as Method A. In the 
test computations described in Section V, it takes about 10 min for a CDC 6600 to 
produce a 24-hr forecast using Method A, and about 3 min using Method B. The 
ratio is thus roughly three to one. With the exception of using the optimal relaxation 
coefficients, no other optimization has been attempted in these computations. 

V. TEST COMPUTATIONS 

The method presented here has been programmed to cary out test computations 
using analysed data for the NMC-grid reproduced in Fig. 2. For programming 
convenience, test computations have been done only with a four-level model of 
the troposhere. The vertical resolution of the model is shown in Fig. 1. Here the 
atmosphere below 200 mbar is divided into four equal layers by mass. The stream 
function is defined at pressures indicated by the dashed lines at 300-, 500-, 700-, 
and 900 mbar. u and w are defined at pressures represented by full lines at 400,- 
600-, 800-, and 1000 mbar. For simplicity, the lateral boundary has been assumed 
to be a rigid wall. Specifically, @/ax, a$/$, &,/~/at are required to vanish at all 
times on the lateral boundary. Values of (T adopted in the computations are given 
in Table 1. System (12) is complete if & is specified. We have assumed &, to be 
time invariant here and having the initial values of J,!J at 1000 mbar. 

Figure 3 shows a sample 500 mbar 24-hr prediction, using the NMC-analyzed 
OOZ 1 November 1969 grid point data as initial conditions and a time increment 
of 4 hr. Here the contours are plotted in decameters. Qualitatively, the forecast 
movements of the weather systems in this case are too slow when compared with 
observations at verification time. This in no way reflects the accuracy of this 
scheme, however, because other features in the model could well account for these 
errors. At any rate, our interest in the accuracy should be limited here to relative 
comparisons between Methods A and B. 

5811913-3 
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FIG. 2. Horizontal domain and resolution of the model. 

Error analyses of a complicated system such as this are difficult and have not 
been attempted. Empirical tests have been conducted in order to compare the 
relative accuracy of the two methods. This is accomplished by solving the system 
(3) and (4) using both methods and then computing the statistics of the predicted 
stream function fields. Judging from the values of RAB in Table 2, it is evident that 
the two schemes give highly correlated results. Here the correlation coefficients 
RAB and normalized mean-square differences S,, of the 24-hr predicted stream 
function fields for OOZ 1 November 1969 are given for each of the forecast levels. 
They are measures of the relative reproducibility of the two schemes. The values 



EFFICIENT QUASI-GEOSTROPHIC PREDICTION 421 

FIG. 3. A sample 500 mb 24-hr predicted height field. 

of the normalized mean-square differences require further clarification. They are 
normalized by the variances of stream function fields at the level in question. Thus 
R AB = 1, S,, = 0 suggests, for example, that both methods A and B produce 
identical results. And RAB = 0, SAB = 2 indicates that the results given by the 
two methods are completely uncorrelated, with mean-square differences as large 
as the variances of the predicted fields. When the mean-square differences are 
larger than the variances of the fields, SAB will, of course, take on values larger 
than 2. The deterioration of RAE and S,, at the lowest forecast level in Table 2 
could be attributed to the fact that in computations using Method A, the second 
term in the lower boundary condition in (7) had to be dropped. However, con- 
tributions due to other factors cannot be ruled out at the moment. As a matter of 
incidental interest, the 24-hr predicted fields were also correlated with the observed 
fields at verification time, OOZ 2 November 1969. Values of R and S in Table 2 
seem to indicate that, as formulated, the forecast skill of Method B is at least 
equal to that of Method A. 
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TABLE 2 

Correlation coefficients R, and normalized mean-square differences S between two 
stream function fields” 

P RAE SAB RAO SAO RBO SBO 
_~_____. 

300 1.00 0.00 0.95 0.10 0.97 0.06 
500 0.99 0.01 0.94 0.12 0.97 0.07 
700 0.97 0.06 0.90 0.18 0.96 0.08 
900 0.89 0.22 0.77 0.42 0.92 0.15 

a AB: between fields computed via methods A and B, similarly for A0 and BO, where 0 
denotes observed fields. 

VI. DISCUSSION 

We have shown that for an energetically consistent quasi-geostrophic model,both 
Methods A and B give very similar results and yet the latter is about four times 
as efficient. If the variation of the map factor can be ignored, we may solve the 
two-dimensional Helmholtz equation (16) over a rectangle directly by performing 
another orthogonal transformation. This would further increase the efficiency of 
Method B by another factor of four (Yee, 1969). While one might not wish to do 
this when dealing with models used for operational purposes, this approach 
does provide us with an efficient way to conduct numerical experiments. 

Even in the cases where there are reasons not to solve the system by direct inver- 
sion, a two-dimensional problem is numerically easier to handle than its three- 
dimensional counterpart.This showsup,for example, bothin estimatingtheoptimum 
relaxation coefficients and in using other iterative methods for solution. Another 
advantage of the latter method lies in the simplicity of the form of the forcing 
function. The forcing function Fij in (12) involves only the Jacobian of known 
spatial functions. This is important on two counts. First, a difference analog of 
the Jacobian having desirable characteristics is available for long-term integration 
(Arakawa, 1966), and second, it is readily amendable to forms which permit the 
use of higher order time-differencing schemes. 

Finally, the divergence term f0 &J/L+ in the vorticity equation is separated in 
Method B explicitly into two parts, that due to thickness advection and that due 
to local change of # in a given layer as well as in its neighboring layers. The latter, 
appearing as the bracketed terms in (10) may be considered as the counterpart 
of an “artificial divergence term” introduced by Cressman (1963) in the vorticity 
equation in his model. Although this was done out of operational needs to suppress 
the retrogression of atmospheric long waves, we can now see that it is in fact 
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justifiable. This is even more obvious in (16) because, though written in a different 
coordinate system, this equation is now identical in form to Cressman’s vorticity 
equation. Thus, the isolation of an explicit time-dependent component in the 
divergence term provides added insight to Cressman’s correction term to the local 
stream function tendency in his three-level model. 
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